MANGALORE UNIVERSITY

BOTANY

(CORE, ELECTIVE AND SKILL COURSES)

SYLLABUS FOR

B.Sc. UNDER GRADUATE (UG) PROGRAMME UNDER SEP SCHEME

With effect from

Academic Year 2024-25

Botany

Programme Outcome:

- > Students will be proficient to comprehend classification, morphology, anatomy, and physiology of various groups of plants.
- > Students will be able to understand the contribution of botany for human welfare with potential uses of plants along with their conservation and sustainable development.
- > Students will be enriched by various skills related to Gardening and Floriculture, preparation of biofertilizers, mushroom cultivation and ethnobotanical knowledge.
- > Students will be able to understand and relate physical features of the environment to the structure of population, community, ecosystem, and sustainable conservation strategies.

		Took!	Exam		Marks		
	Semester-wise Course Topics	Teachi ng hrs/ week	duration (hrs)	I.A	Exam	Total	No. of Credits
SEMES							
Group I	BSCBOCS 101: Diversity of Microbes, Algae and Fungi (T)	4	3	20	80	100	03
Group r	BSCBOPS 101: Diversity of Microbes, Algae and Fungi (P)	4	3	10	40	50	02
SEMES	ΓER – II						
Group I	BSCBOCS 201: Diversity of non-flowering plants and Plant anatomy (T)	4	3	20	80	100	03
Group I	BSCBOPS 201: Diversity of non-flowering plants adPlant anatomy (P)	4	3	10	40	50	02
SEMES	ΓER – III						
Carra I	BSCBOCS 301: Angiosperm Morphology and Reproductive Botany (T)	4	3	20	80	100	03
Group I	BSCBOPS 301: Angiosperm Morphology and Reproductive Botany (P)	4	3	10	40	50	02
Group II	BSCBOCES 301: Elective Course: Medicinal Botany	2	2	10	40	50	02
SEMES	ΓER – IV						
Caora I	BSCBOCS 401: Plant Taxonomy and Economic Botany (T)	4	3	20	80	100	03
Group I	BSCBOPS 401: Plant Taxonomy and Economic Botany (P)	4	3	10	0 40 0 40 0 80 0 40 0 40 0 40	50	02
Group II	BSCBOCES 401: Elective Course: Nursery and Gardening Techniques	2	2	10 40 20 80 10 40 10 40 20 80 10 40 10 40 20 80 20 80 20 80 10 40	50	02	
1	BSCBOCSS 401: Skill Paper 1: Floriculture	2	2	10	40	50	02
SEMES	ΓER – V	1					l .
	BSCBOCS 501: Ecology and Conservation Biology (T1)	3	3	20	80	100	03
	BSCBOCS 502: Genetics, Cell and Molecular Biology (T2)	3	3	20	80	100	03
Group I	BSCBOPS 501: Ecology and Conservation Genetics, Cell and Molecular Biology (P)	4	3	10	40	50	02
	BSCBOCSS 501: Skill Paper 2: Mushroom Cultivation Technology	2	2	10	40	50	02
SEMES	ΓER – VI						
	BSCBOCS 601: Plant Physiology (T1)	3	3	20	80	100	03
	BSCBOCS 602: Plant Breeding and Biotechnology (T2)	3	3	20	80	100	03
Cuerra	BSCBOPS 601: Plant Physiology& Plant Breeding and Biotechnology (P)	4	3	10	40	50	02
Group I	BSCBOCSS 601: Skill Paper 3: Seed Technology	2	2	10	40	50	02
	T= Theory, P=Practical				Total Cr	edits	46
			•		•		

MANGALORE UNIVERSITY

BOTANY SYLLABUS FOR UG PROGRAMS

w. e. f. 2024-25

DISCIPLINE CORE PAPERS (DSC)

Sl. No.	Semester Details	Subject	
1	Semester I	Diversity of Microbes, Algae and Fungi	
2	Semester II	Diversity of non-flowering plants and Plant Anatomy	
3	Semester III	Angiosperm Morphology and Reproductive Botany	
4	Semester IV	Plant Taxonomy and Economic Botany	
5	Semester V	Ecology and Conservation Biology	
3		Genetics, Cell, and Molecular Biology	
6	Semester VI	Plant Physiology	
		Plant Breeding and Biotechnology	

ELECTIVE and SKILL PAPERS

Sl No.	SemesterDetails	Subject: Botany	Credits
) (!: . 1 p	0.0
I	Semester III - Elective	Medicinal Botany	02
2	Semester IV - Elective	Nursery and Gardening Techniques	02
	Semester IV - Skill paper 1	Floriculture	02
3	Semester V - Skill paper 2	Mushroom Cultivation Technology	02
4	Semester VI - Skill paper 3	Seed Technology	02

SEMESTER – I Diversity of Microbes, Algae and Fungi –Theory

Course Objectives:

- To explore and identify microbes and lower plants, and to gain adequate knowledge on the comparative account of these organisms.
- To impart knowledge about the occurrence, distribution, structure, and life history of microbes and lower plants such as algae, fungi, and lichens.
- To acquaint students with a wide spectrum of plant diseases, their causes, symptoms, and control measures.

Course Outcomes:

After completion of the course, the students will be able to:

- Understand the diversity of microbes in nature.
- ➤ Know the diversity of algae, fungi, lichens, and their uses.
- ➤ Identify and classify algae and fungi.
- > Develop practical skills in staining techniques and slide preparation.
- ➤ Identify plant disease symptoms and apply management techniques.

Unit	Topics	Teaching Hours
I	Introduction to Botany: Branches and scope, Major historical developments in Botany including contributions of Indian Botanists (Sir J. C. Bose, P. Maheshwari, B.G.L. Swamy, E.K. Janaki Ammal and M. S. Swaminathan) Career opportunities in Botany. Five kingdom and Three domain systems of classification of organisms with examples Viruses: Classification based on hosts and nature of genetic material. Ultrastructure and multiplication of TMV and T4 Phage. A brief account of Viroid's and Prions. Bacteria: Types based on cellular morphology, flagellation and modeof nutrition. Ultra structure of a Bacterial cell. Reproduction: binary fission and endospore formation. Genetic recombination in bacteria - conjugation, transformation and transduction (generalized type), Economic importance of Bacteria.	12

II	Algae -1: Occurrence, thallus organization and general methods of reproduction	12
	with examples. Pigmentation in algae, Fritsch's classification of algae up to the	
	level of classes with examples.	
	Cyanophyceae: Ultra structure of a cyanobacterial cell andheterocyst. Structure	
	and reproduction of <i>Nostoc</i> .	
	Chlorophyceae: Thallus structure and reproduction of <i>Oedogonium</i>	
	Bacillariophyceae: Types of diatoms with examples- Pennales and Centrales.	
	Thallus structure and reproduction of a Pennate diatom (Pinnularia)	
III	Algae-2:	12
	Phaeophyceae: Thallus structure and reproduction of Sargassum	
	Rhodophyceae: Thallus structure and reproduction of Polysiphonia.	
	Economic importance of algae: Useful aspects- food, SCP, industrial products,	
	medicine, sewage treatment, bio-fertilizers, pollution indicators and energy	
	source. Harmful aspects- algal blooms, algal toxins, and parasitic algae.	
	Fungi: Salient features, occurrence, mycelial organization- prosenchyma, pseudo	
	parenchyma, rhizomorph and sclerotium. General methods of reproduction with	
	example. Alexopoulos system of classification up to the level of classes with	
	examples. Thallus structure and reproduction of Rhizopus	
	(Zygomycetes), Penicillium (Ascomycetes) and Agaricus (Basidiomycetes).	
	Economic importance of Fungi: food value, industrial products, medicinal	
	products, bio control agents and Fungal toxins.	
IV	Plant Pathology: Introduction, causes and disease management of Sandle spike	12
	disease (phytoplasma), Katte disease of Cardamom (virus), Bacterial blight of	
	paddy (bacteria) and Stem bleeding disease of coconut (fungi).	
	Mycorrhizae : definition, types – ecto, endo (VAM) and ectendomycorrhizae,	
	Ecological and economic significance of mycorrhizae.	
	Lichens: Classification- asco and basidio-lichens. Morphological types with	
	examples- crustose, foliose and fruticose. Internal structure of thallus -	
	homeomerous and heteromerous types. Structure of fruiting bodies - soredium,	
	isidium, apothecium and perithecium, Economic importance of lichens.	
	Total	48 hrs

REFERENCE BOOKS:

- 1. Suresh Narayan, & Pullaiah, T. (2010). *Eminent Indian botanists Past and present*. Regency Publications.
- 2. Dubey, R. C., & Maheshwari, D. K. (2009). A text book of microbiology. S. Chand Publishers.
- 3. Dey, S. N., & Trivedi, P. S. (1977). A text book of botany: Vol. I. Vikas Publishing.
- 4. Gangulee, H. C., Das, K. S., & Datta, C. T. (2002). College botany: Vol. II. NCBA (P) Ltd.
- 5. Kumar, H. D., & Singh, H. N. (1996). A text book of algae. East West Press.
- 6. Pelczar, M. J., Chan, E. C. S., & Krieg, N. R. (2008). Microbiology (5th ed.). McGraw Hill.
- 7. Purohit, S. S. (1989). Viruses, bacteria and mycoplasmas. Agrobotanical Publications.
- 8. Singh, V., Pandey, P. N., & Jain, D. K. (2015). A text book of botany. Rasogi Publications.
- 9. Smith, G. M. (1955). *Cryptogamic botany: Vol. I. Algae and fungi* (2nd ed.). McGraw Hill Book Co. Inc.
- 10. Smith, K. M. (1990). Plant viruses (6th ed.). Universal Book Stall.
- 11. Sundara Rajan, S. (2009). College botany: Volume 1. Himalaya Publications.
- 12. Suresh Narayan, & Pullaiah, T. (2010). *Eminent Indian botanists Past and present*. Regency Publications.
- 13. Vashistha, B. R., Sinha, A. K., & Singh, V. P. (2004). *Botany for degree students*. S. Chand Publishing.

SEMESTER – I Diversity of Microbes, Algae and Fungi –Practical

Practical No.	Title of practical exercise/experiment
1	Microscopy technique: Study of compound and Dissection microscopes – parts, working principle, handling and preparation of temporary mountings
2	Microscopic observation of Bacterial cells by simple staining (Positive-Crystal violet, Negative-Nigrosine or Indian Ink). Differential staining of Bacteria - Gram's staining.
3	Study of thallus structure of Nostoc, Oscillatoria and Scytonema
4	Study of thallus structure of Volvox, Oedogonium and Cladophora
5	Study of thallus and reproductive structures of <i>Chara</i> and structures of <i>pennate Diatoms</i>
6	Study of thallus and reproductive structures of Sargassum and Polysiphonia
7	Study of vegetative and reproductive structures of Penicillium, Rhizopus and Puccinia
8	Study of symptoms, causative organism and control measures of Banana Bunchy Top Disease, Citrus Canker and Root Knot of Brinjal, with the help of specimens /photograph.
9	Study of symptoms, causative organism and control measures of Koleroga of Areca Nut, Blast Disease of Rice and Rust of Coffee.
10	Study of Lichens- morphological types, internal structure and reproductive structures
11	Study of local diversity of algae/fungi and preparation of an inventory with photographs/microphotographs (any five not mentioned in practical syllabus)
12	Listing and Study of common fungal/bacterial/viral diseases of local cropplants/plantation crops (any five not mentioned in practical syllabus)

Mangalore University B.Sc. I Semester -Practical Examination Diversity of Microbes, Algae and Fungi Question paper and Scheme of evaluation

_	Time: 3hrs.	Batch	Date	Time:am/pm	Max. Marks: 40
1	. Prepare a stain	ned slide of spec	imen A . Sketch, labe	l and identify with reasons.	
	Leave the prep	paration for insp	ection.	·	06
2	. Identify B & C	C giving reasons	5,		3+3=06
3	. Identify D & I	E with reasons a	nd labeled sketches.		3+3=06
	Prepare a stain	ned slide of the	given bacterial sample	e F .	
	Show the prepar	ration to the exar	niner and write the prod	cedure.	03
4	. Sketch, label a	and identify the	slides G, H & I with	reasons.	3+3+3=09
5	. Record Submi	ssion and Field	Notes.		7+3 = 10

1	A		Prep. Sk Id Cl Reasons $2 1\frac{1}{2} \frac{1}{2} \frac{1}{2} 1\frac{1}{2} = 6$	Reg. No. of Candidates Assigned
2	В		Id. Reasons $1 = 3$ each	
2	C			Reg. No. of Absentees:
	D		Id Sk. Reasons. $\frac{1}{2}$ 1 $\frac{1}{2}$ = 3 each	
3	Е			Total examined:
4	F		Prep - 1 Procedure – 2	Name and Signature of Examiners:
	G		SkId Cl Reasons	1. Internal
5	Н		$1 \frac{1}{2} \frac{1}{2} = 3$ each	
	I			
6		Record with Field report	7+3 = 10	2. External

Instruction to Examiners:

A - Any algal specimen

B and **C**- One algal and one fungal specimen

D and **E**- Any Pathological specimen/Morphological types of lichens

F - Bacterial culture/curd sample/root nodule suspension

G, **H** and **I**- Slides (Lichen/Algae/Fungi -one each)

SEMESTER – II

Diversity of Non-Flowering Plants and Plant Anatomy – Theory

Course objectives:

- To study the structure and function of various tissues and their location in the plantbody
- To provide relevant information about Pteridophytes and Gymnosperms along withtheir evolutionary history, their phylogenetic relationships and fossil wealth of the world and economic importance of selected forms.
- To ascertain the importance of fossilization to relate life forms of earlier era

Course Outcome:

On completion of this course, the students will develop the following skills:

- To identify and classify non-flowering plants.
- ➤ Will gain basic knowledge of GTS and plant fossils.
- Deservation of variations that exist in the internal structure of various parts of a plant and among different plant groups in support of the evolutionary concept.
- Skill development for the proper description of internal structure using botanical terms, their identification and further classification.
- Induction of the enthusiasm towards the internal structure of locally available plants.

Unit	Topics	Teaching	
		Hours	
I	Plant Histology and Anatomy:	12	
	Introduction to tissues, general classification of tissues.		
	Meristematic tissues: definition, classification based on origin, function, and		
	position. Theory of shoot organization – tunica corpus theory, Theory of root organization - histogen theory.		
	Permanent Tissues: simple permanent tissues - structure, types and functions of parenchyma, sclerenchyma, and collenchyma. Complex permanent tissues -		
	structure, composition and functions of xylem and phloem.		
	Secretory tissues: Glandular trichomes, nectars, glands, laticifers and resin ducts.		
	Primary anatomy of dicot and monocot root, stem, and leaf. Normal secondary		
	growth in dicot stem.		
II	Bryophytes:	12	
	Occurrence, General characteristics, Rothmaler's classification up to the level of classes with examples.		
	Thallus morphology, anatomy, and reproduction of Riccia, Anthoceros and		
	Funaria.		
	Evolution of sporophytes and gametophytes in bryophytes – theories of progressive sterilization and simplification. Importance of bryophytes.		

III	Pteridophytes: Occurrence, General characteristics, G. M. Smith's classification up to the level of classes with examples. Morphology, anatomy and reproduction in <i>Psilotum</i> , <i>Equisetum</i> and <i>Pteris</i> , Stelar variations in pteridophytes, Heterospory and seed habit. Economic importance of pteridophytes.	12
IV	Gymnosperms: Occurrence, Salient features, Sporne's system of classification up to the levelof classes with examples. Morphology, anatomy, and reproduction in <i>Cycas</i> and <i>Gnetum</i> . Economic importance of Gymnosperms. Paleobotany: Introduction, significance of fossils, Geological time scale and Evolution of plant groups, Types of plant fossils – compressions, impressions, incrustations, petrification with examples. Fossil dating- direct and indirect. Fossil Pteridophytes- <i>Rhynia</i> – Morphology of sporophyte. Fossil Gymnosperms- <i>Cycadeoidea</i> - Morphology.	12
	Total	48 hrs

REFERENCE BOOKS

- 1. Pandey, B. P. (2001). College Botany: Volume I. S. Chand Publishing. ISBN: 8121905931
- 2. Sundara Rajan, S. (2011). College botany (Vol. 3). Himalaya Publishing House
- 3. Kumaresan, V., & Reginald, A. (2013). Pteridophytes, gymnosperms and paleobotany. Saras Publications. ISBN: 9789381927779
- 4. Vashishta, P. C. (2013). Botany for degree students: Gymnosperms (Revised ed.). S. Chand Publishing. ISBN: 9788121926188
- 5. Johri, B. M. (2015). Embryology of angiosperms. Springer. ISBN: 9788132208591
- 6. Sambamurthy, A. V. S. S. (2005). Textbook of bryophytes, pteridophytes, gymnosperms and palaeobotany. J.K. International Publishers. ISBN: 9788187134966

SEMESTER – II Diversity of Non-Flowering Plants and Plant Anatomy – Practical

Practical No.	Title of exercise /experiments
1	Study of structure and reproduction of <i>Riccia, Anthoceros</i> and any moss
2	Study the morphology, anatomy, and reproductive structure of <i>Selaginella</i> and <i>Equisetum</i>
3	Study the morphology, anatomy, and reproductive structure of <i>Pteris</i> and <i>Marselia</i>
4	Study the morphology, anatomy, and reproductive structure of <i>Cycas</i>
5	Study the morphology, anatomy, and reproductive structure of <i>Pinus</i>
6	Study the morphology, anatomy, and reproductive structure of <i>Gnetum</i>
7	Study of simple and complex permanent tissues
8	Study of dicot and monocot stem (T. S)
9	Study of dicot and monocot root (T. S)
10	Study of Normal secondary growth in dicot stem (T. S)
11	Study of dicot and monocot leaf (T. S)
12	Study of local diversity of Bryophytes / Pteridophytes/Gymnosperms and preparation of an inventory with photographs to be recorded in Record book.

Mangalore University

B.Sc. II Semester - Practical Examination Diversity of Non-Flowering Plants and Plant Anatomy Question paper and Scheme of evaluation

Time: 3 hrs.	Batch	Date	Timeam/pm	Max. Marks:40
1	l. Prepare a tempo	rary stained section	of the material A . sketch, l	abel and identify with
	reasons. Leave t	the preparation for	inspection	06
2	2. Identify B and C	C with reasons		3+3=06
3	3. Write critical no	tes on D and E with	h labelled sketches	3+3=06
4	I. Identify, sketch	and label the slides	F, G, H & I with reasons	3+3+3+3=12
4	5. Record with field	d report		7+3=10

1	A		Prep. Sk Id Reasons $2 1\frac{1}{2} \frac{1}{2} \frac{2}{2} = 6$	Reg. No. of Candidates Assigned
	В		Id Rea 1 2 = 3 each	
2	С			
3	D		Id Sk Crt.Nts. 1/2 1 11/2 = 3 each	Reg. No. of Absentees:
	Е			Total examined:
	F G		Sk Id Reasons	
4	Н		$1 \frac{1}{2} \frac{1}{2} = 3$ each	Name and Signature of Examiners:
	Ι			1. Internal
5		Record with Field report	10	2. External

Instruction to Examiners:

A from dicot or monocot stem/root

B and **C** one specimen each from Bryophyta and Gymnosperms

D and E from Pteridophyta

F, G, H and I - one slide each from Histology, Bryophyta, Pteridophyta, Gymnosperms

SEMESTER -III

Angiosperm Morphology and Reproductive Botany - Theory

Course objectives:

- > To study the morphological variations & modifications in vegetative and floral plants
- > To study the reproductive methods and life cycle of angiosperms
- > To understand the steps involved in embryogenesis in plants.

Course Outcome: On completion of this course, the students will develop the following skills:

- ➤ Observation and classification of the floral variations in different plants.
- Able to understand the various reproductive methods and the life cycle of flowering plants
- ➤ Observation and classification of the embryological variations in angiosperms.
- > Enthusiasm to understand the evolution based on various methods of reproduction.

Unit	Topic	Teaching
		Hrs
I	Morphology of Vegetative Structures	12
	Parts of a typical flowering plant. Morphology of vegetative organs:	
	Root : Characteristics, types - tap and adventitious, root modification- storage, mechanical support and vital functions.	
	Stem : Characteristics, functions, modification – underground, sub aerial and aerial.	
	Leaf: Parts of typical leaf, venation and modifications of leaf, Phyllotaxy.	
II	Morphology of Reproductive Structures	12
	Inflorescence: Racemose, cymose and special types. Flower: Parts of a typical	
	flower, forms of thalamus, androphore, gynophore, gynandrophore, insertionof floral	
	whorls on the thalamus (hypogyny, perigyny and epigyny), structure, function and	
	modification of calyx, corolla, aestivation, androecium and variations gynoecium and	
	its variations, placentation.	
III	Reproductive Botany I	12
	Microsporangium: Morphology and Anatomy of the mature anther; Anther wall	
	layers; Tapetum -types, structure and functions; sporogenous tissue.	
	Microsporogenesis - Microspore mother cells, microspore tetrads and their types;	
	structure of mature pollen; Pollinia. Microgametogenesis – structure and	
	development of male gametophyte. Pollen embryosac (Nemec phenomenon).	
	Megasporangium – Ovule and types of ovules - Anatropous, Orthotropous,	
	Amphitropous and Campylotropous. Detailed Structure of Orthotropous ovule.	
	Megagametogenesis— Female gametophyte /embryosac -tenuinucellate and	
	crassinucellate; monosporic - Polygonum type (in detail), bisporic - Allium type, tetrasporic - Fritillaria type (Just mentioning the types in brief). Structure of mature	
	7-celled embryo sac.	

IV	Reproductive Botany II	12
	 Pollination: Definition, self and cross-pollination and their types, contrivances for self and cross-pollination; types of pollination based on agents and their characteristic features. Fertilization: Process and significance of double fertilization, Post fertilization events. Endosperm – Types- Free nuclear (<i>Cocos nucifera</i>), cellular (<i>Cucumis</i>) and helobial. Significance of endosperm. Ruminate endosperm. Embryogenesis: Dicot (<i>Capsella bursa-pastoris</i>) and Monocot (<i>Najas</i>) embryo development. 	
	Fruits: Types - simple, aggregate and multiple fruits. Fruit and Seed dispersal strategies. Seed: Structure of Dicot and Monocot seed.	
	Total	48 hrs

References:

- 1. Bhojwani, S. S., Bhatnagar, S. P., & Dantu, P. K. (2015). *The embryology of angiosperms* (6th ed., 376 pp.). Vikas Publishing House. ISBN: 9789325981294
- 2. Pandey, B. P. (2001). *A textbook of botany: Angiosperms* (Illustrated ed., 821 pp.). S. Chand Publishing. ISBN: 9788121904049
- 3. Bhojwani, S. S., & Soh, W. Y. (Eds.). (2001). *Current trends in the embryology of angiosperms* (544 pp.). Dordrecht: Kluwer Academic Publishers. ISBN: 0-7923-6888-6
- 4. Eames, A. J. (1961). Morphology of the angiosperms (518 pp.). McGraw-Hill.
- 5. Raghavan, V. (2012). *Developmental biology of flowering plants* (Illustrated ed., 354 pp.). Springer Science & Business Media. ISBN: 9781461212348
- 6. Saxena, M. R. (1993). *Palynology: A treatise* (127 pp.). New Delhi: Oxford & IBH Publishing Co. Pvt. Ltd.
- 7. Nair, P. K. K. (1970). *Pollen morphology of angiosperms: A historical and phylogenetic study* (160 pp.). Scholar Publishing House. ISBN: 9780389042044
- 8. Johri, B. M. (Ed.). (1984). *Embryology of angiosperms* (Illustrated ed., 830 pp.). Springer-Verlag. ISBN: 9780387127392
- 9. Shukla, A. K., Vijayaraghavan, M. R., & Chaudhry, B. (1998). *Biology of pollen* (133 pp.). APH Publishing. ISBN: 9788170249245
- 10. Maheshwari, P. (1950). An introduction to the embryology of angiosperms (453 pp.). McGraw-Hill.

SEMESTER - III

ANGIOSPERM MORPHOLOGY AND REPRODUCTIVE BOTANY – PRACTICAL

Practical No.	Title of exercise /experiments
1	Morphology and modification of root
2	Morphology and modification of stem
3	Study of inflorescences- Racemose, Cymose and special types
4	Study of fruits- simple, aggregate and multiple fruits
5	Study of flower and its parts; epigynous, perigynous and hypogynous flowers
6	Pollination types and seed dispersal mechanisms (including appendages - aril and caruncle)using photographs and/ specimens).
7	a. Structure of anther (young and mature) using permanent slides.
	b. Types of placentation and types of ovules (anatropous, orthotropous, campylotropous) using permanent slides.
8	a. Estimation of pollen viability (in vitro method) by hanging drop method.
	b. Study of pollen grains from any five flowers.
9	Female gametophyte: Polygonum (monosporic) type of Embryo sac Development (Permanent slides/photographs). Ultrastructure of mature egg apparatus cells through electron micrographs.
10	Dissection and mounting of the embryo from developing seeds (monocot and dicot).
11&12	Mini project: Mini project work in groups of 2-4 students/individual, from the following list. This is to be recorded in the practical record book.
	i. Leaf morphology (Monocot and Dicot) types and phyllotaxy.
	ii. Placentation types.iii. Variation in calyx and corolla and their significances.
	iv. Variation in androecium and gynoecium and their significances.
	v. Seed dispersal methods.
	vi. Types of fruits
	vii. Modification of root/stem/leaves
	viii. Any topic relevant to the title

Mangalore University

B.Sc. III Semester - Practical Examination ANGIOSPERM MORPHOLOGY AND REPRODUCTIVE BOTANY Question naner and Scheme of evaluation

	Question paper a	na scheme of evaluation	
Batch	Date	Time	Max. Marks: 40

Time: 3	hrs. Batch	Date	Time	am/pm	Max. Marks	<u>: 40</u>
1.	Estimate the percentage	of pollen viability is	n the given mat	erial A by hanging of	drop method.	
	Write the procedure. Lea	eve the preparation	for inspection.		•	07
2.	Dissect and mount the	embryo from the	given materia	l ${f B}$ and draw a lab	elled sketch.	
	Identify by giving reason	ns.				04
3.	Identify the specimens	C, D and E, dray	v a labelled di	agram and comme	nt on the morpho	ology/
	modification					08
4.	Identify the slides F ar	\mathbf{G} with labelled	diagram and	reasons.		08
5.	Identify the structure i	n the given photog	graph/slide H	with reasons and la	abelled sketch.	03
6.	Practical Record and p	roject report	- <u>-</u>			10

1	Α		Slide - 0	2, Prod	cedure-	02,	Reg. No. of Candidates
			Tabulati	on, Ca	lculation	n & result- 02	Assigned:
			= 06				_
2	В		Mountin	ıg, Id, I	Labl sk,	Reason	
			01	_	01	01	
3	С		Id, La	ıbl sk, l	Reason		
	D		01	01	01	3x3 = 9	Reg. No. of absentees:
	Е			-			reg. 10. of desentees.
4	F		Id I	ahl sk	Reason		
	G		01	01	02	4x2 = 8	
	U		01	01	02	4 A Z = O	Total Examined:
5	Н		Id I o	hl ala l	Daggan		Total Examined.
)	П				Reason	2 1 2	
			01	01	01	3x1=3	. ·
							Examiners:
							1. External
6		Practical Record with Project				7+3=10	
		Report					
		_					
							2. Internal

Note to the Examiners:

- A Vinca/Impatiens/any suitable flower.
- B Sweet corn (tender seed)/Crotalaria/ Mustard (tender)/ any seeds.
- C Root/Stem modification; & D Inflorescence, E- Fruit
- F & G Anther, ovule type/Placentation type
- H Electron micrograph of Ultrastructure of mature egg apparatus/photograph of-pollen grain/ pollen types and dispersion showing ornamentation and aperture.

Open Elective Course: Semester – III: Medicinal Botany

Course outcome: After the successful completion of the course, the student will be able to:

- Understand the medicinal properties of plants and different systems of medicines
- Understand the adulterations in herbal drugs and evaluation of an herbal drug
- Develop interest in the cultivation and conservation of medicinal plants.

Unit	Topics	Teaching Hours
I	Introduction to medicinal Botany, Role of plants in traditional medical systems - Ayurveda, sidda, unani and folk medicine. Diversity of medicinal plants of India. A medicinally useful plant part with examples – root, stem, leaf, and fruits/seeds. Chemical constituents of herbal drugs with examples- carbohydrates, alkaloids, glycosides, oils, resins, lipids and fibres. Study of morphology, medicinal uses and commercial products of important Indian traditional medicinal plants (List to be given) Aloe vera, Turmeric, Neem, Tulsi, and Zinger.	12
II	Concept of herbal neutraceuticals and cosmeceuticals. Collection and processing of herbal drugs – harvesting, drying, garbling, packing, storage, quality management and documentation. Importance of cultivation and conservation of medicinal plants.	12
	Ethnobotany and its significance Adulteration of herbal drugs. Methods of evaluation of herbal drugs – organoleptic, microscopical, chemical, physical, and biological.	
Total		24 Hours

SUGGESTED REFERENCE BOOKS:

- 1. Jain, S. K. (2010). Manual of ethnobotany (2nd rev. ed.). Scientific Publishers. ISBN: 9387307859
- 2. Dutt, A. (2009). An introduction to medicinal plants. Adhyayan Publishers and Distributors. ISBN: 978-8184350623
- 3. Atal, C. K., & Kapoor, B. M. (1982). *Cultivation and utilization of medicinal plants*. Regional Research Laboratory, Jammu Tawi.
- 4. Shah, B., & Seth, A. K. (2014). Textbook of pharmacognosy and phytochemistry. Elsevier. ISBN: 9788131234737
- 5. Trivedi, P. C. (2009). Medicinal plants: Utilization and conservation. Avishkar Publishers. ISBN: 8179102857
- 6. Akerele, O., Heywood, V., & Synge, H. (1991). *The conservation of medicinal plants*. Cambridge University Press. ISBN: 9780521392005
- 7. Chaudhary, A. B. (2007). Endangered medicinal plants. Daya Publishing House. ISBN: 8170354605
- 8. Kokate, C. K., Purohit, A. P., & Gokhale, S. B. (2018). *Pharmacognosy* (58th ed.). Nirali Prakashan. ISBN: 9789387669123

SEMESTER – IV Taxonomy and Economic Botany – Theory

Course objectives:

- To study the methods of identification, classification, and nomenclature of angiosperms.
- > To know economically important plants and their uses.

Course outcome:

After the successful completion of the course, the student will be able to:

- ➤ Understand the different systems of plant classification
- ➤ Identify, classify, and describe a plant in scientific terms, thereby, identification of plants using dichotomous keys, skill development in identification and classification of flowering plants.
- > Interpret the rules of ICN in botanical nomenclature
- Recognize the importance of herbarium and digital herbarium,
- Recognize locally available angiosperm families and plants of economic importance.

Unit	Topics	Teaching Hours
I	Introduction to Taxonomy: History, objectives and scope of Taxonomy Systems of classification: Artificial - Carolus Linnaeus's, Natural- Bentham and Hooker's, Phylogenetic - Engler and Prantl's, their merits and demerits. A brief study of APG system of plant classification with focus to latest APG IV system and its significance Plant identification: Taxonomic dichotomous keys; brief account of intended (yoked) and bracketed keys. Botanical nomenclature: Binomial nomenclature, a brief introduction to ICBN-principles and rules, ranks of taxa and taxonomic types. Brief introduction to cyto-taxonomy, chemo-taxonomy, numerical taxonomy and molecular taxonomy, DNA barcoding of plants.	12
II	Herbaria and herbarium techniques, digital herbaria. Botanical Survey of India, Botanical gardens, and their functions. Distinguishing features with economic importance of any five local examples from the following families of angiosperms, according to Bentham and Hooker system: Polypetalae-, Malvaceae, Fabaceae and its sub-families, Rutaceae, Anacardeaceae, Cucurbitaceae and Apiaceae.	12
III	Distinguishing features with economic importance of any five local examples from the following families of angiosperms according to Bentham and Hooker system: Gamopetalae - Rubiaceae, Asteraceae, Apocynaceae, Solanaceae and Lamiaceae. Monochlamydeae -Amaranthaceae, Euphorbiaceae and Moraceae Monocotyledonae - Orchidaceae, Arecaceae and Poaceae.	

IV	Economic Botany:	12
	Introduction to economic botany: Definition and significance	
	Cereals: Botany*, products and uses of Rice and Wheat. Brief account of millets.Pulses/	
	Legumes: Botany and uses of Mung bean and Pigeon pea	
	Brief account of fodder legumes.	
	Spices and condiments: Definition. Botany and uses of Cinnamon, Clove, Black pepper,	
	Cardamom, Ginger, and Coriander.	
	Beverages : Definition. Botany*, processing and uses of Tea and Coffee	
	Oil yielding plants: Types of plant oils with examples -fatty oils and essential oils.	
	Botany*, extraction/processing and uses of Coconut and Sandalwood oil.	
	Fiber yielding plants: Classification based on origin of fibers. Morphology, extraction	
	anduses of Cotton and Coir fibers.	
	Timber yielding plants : Important timber yielding plants of India (any five) and their	
	uses.	
	Rubber yielding plants: Botanical source, extraction/processing, and uses of Hevea rubber	
	Medicinal plants: Botany* and uses of Rauwolfia serpentina, Centella asiatica,	
	Tinospora cordifolia and Aloe vera	
	A general account of outdoor and indoor ornamental plants.	
	A general account of ethnobotany: definition and its significance.	
	Note: *Botany includes botanical name, family, place of origin and parts used	
	Total	48 hrs

Reference Books:

- 1. Jain, S. K. (2010). Manual of ethnobotany (2nd rev. ed.). Scientific Publishers. ISBN: 9387307859
- 2. Datta, S. C. (1989). Systematic botany. New Age International. ISBN: 8122400132, 9788122400137
- 3. **Singh, G.** (2019). *Plant systematics: Theory and practice* (3rd ed.). CBS Publishers & Distributors Pvt. Ltd. ISBN: 9788120417632.
- 4. **Soundar Rajan, S.** (2007). *College botany Vol. V, Part 1: Taxonomy and economic botany*. Himalaya Publishing House.
- 5. Mukherjee, S. K. (2004). College botany (Vol. III). New Central Book Agency.
- 6. Pandey, B. P. (1999). Economic botany (5th ed.). S. Chand Publication. ISBN: 978-8121903417
- 7. **Bhat, K. G.** (2014). Flora of South Kanara: Dakshina Kannada and Udupi districts of Karnataka. Taxonomy Research Centre. ISBN: 9789383765126
- 8. Bhat, K. G. (2014). Flora of Udupi. Taxonomy Research Centre. ISBN: 9788190251413
- 9. Singh, V. (1981). Taxonomy of angiosperms. Rastogi Publications. ISBN: 9788171338498
- 10. Kochhar, S. L. (2011). Economic botany in the tropics (4th ed.). Macmillan Publishers India Ltd.

SEMESTER – IV Taxonomy and Economic Botany -Practical

Practical	Experiments
No.	
1	Study of Malvaceae
2	Study of Fabaceae sub- families
3	Study of families Myrtaceae and Apiaceae
4	Study of families Rubiaceae and Asteraceae
5	Study of families Apocynaceae and Lamiaceae
6	Study of families Amaranthaceae and Euphorbiaceae
7	Study of families Arecaceae and Poaceae
8 & 9	Botany and uses of economically important plants with observation of plants/plant products listedas follows: Rice, wheat, Ragi, Bengal gram Cinnamon, Clove, Black pepper, Cardamom, Ginger and Coriander, Tea powder, Coffee powder, Cocoa fruit, Cotton, Coir and Jute fibers, Rubber, Jaggery, Brahmi (<i>Centella asiatica</i>) and <i>Aloe vera</i> .
10	Study of outdoor and indoor ornamental plants with photographs (two each).
11 &12	Mini project report in groups of 2- 4 students, from any one of the following lists to be recorded in the practical record. a) Study of the members of the family Cucurbitaceae (any 5) b) Study of the members of the family Anacardiaceae (any 5) c) Study of Orchid flower. d) Preparation of digital herbarium for plant specimens (any 2) e) Chart preparation on processing/extraction of any one essential oil f) Any relevant topic

Activities:

Field visit to study the botanical name, family, common names and economic/ ethno-botanical importance of local angiosperms. A brief report of such field visit with the list of plants observed and field photographs/diagrams should be included in the practical record.

Mangalore University

B.Sc. IV Semester- Practical Examination TAXONOMY and ECONOMIC BOTANY

Question Paper and Scheme of evaluation

Time: 3hrs. Batch...... Date....... Time.......am/pm Max. Marks: 40

1. Derive and describe the specimen A, B & C taxonomically (3 x 4)	12
2. Explain the specimen D using technical terms with the family and Botanical name	05
3. Write the floral diagram and floral formula of the given specimen E	05
4. Write botanical name, common name, family and part used of F , G , H & I (4 x 2)	08
5. Practical Record with field visit and mini project report	10

1	A		Derivation	01	Reg. No. of
	В		Family and Botanical name	01	Candidates Assigned
	C		Description	02	
				04	
				3x4 = 12	
2			Family and Botanical name	01	
	D		Technical description	04	Reg. No. of absentees:
				05	
3	Е		Floral formula	02	
			Floral diagram	03 05	
				05	
4	F		Botanical name	1/2	1. External
	G		Common name	1/2	1. External
	Н		Family name	1/2	
	I		Part used	1/2	
			4	4x2=8	
5		Practical Record with		10	
3				10	2. Internal
		field visit & Project			2. michal
		report			

Note:

- A B & C Each from Polypetalae, Gamopetalae and Monochlamydeae
- **D** Plant specimen with inflorescence/flower from any of the family studied.
- E Plant Specimen from any of the family studied.
- F, G, H & I Plant/plant product from any of the specimen mentioned in the practical syllabus.

Open Elective Course: Semester - IV

Nursery and Gardening Management

Course outcome: After the successful completion of the course, the student will be able to:

- To introduce students to the principles and practices involved in nursery and garden management.
- To develop skills in planning, design, establishment, and maintenance of nurseries and gardens
- > Understand the nursery techniques and management
- Develop the knowledge of different types of gardens and garden plants and their management

Unit	Content of Theory Elective Course	Teaching Hours	
I	Nursery: Definition, Objectives, and Scope of Nursery. General Practices: Seed collection, sowing, watering, weeding, fertilization, pest and disease control. Infrastructure Requirements: Site selection, layout planning, fencing, irrigation systems, storage, work sheds. Seasonal Planning and Activities: Calendar-based nursery activities—sowing, transplanting, pruning, etc. Planting Techniques: Direct seeding vs. transplanting methods. Growth Media: Soil-based and soilless media (e.g., cocopeat, perlite, vermiculite). Synthetic growth media for pots and nursery beds. Hardening of Plants: Methods to acclimatize nursery plants before field planting. Protected Structures: Greenhouse, Mist chamber, Shade net house / Shed roof, Glasshouse. Bonsai Techniques: Cultural requirements, Tools and materials, Art and aesthetics of bonsai creation and maintenance.	12hrs	
II	Gardening: Definition, Objectives, and Scope of Gardening. Principles of Gardening: Unity, balance, simplicity, rhythm, and proportion. Garden Components: Paths, hedges, fences, gates, seating, arches, pergolas. Adornments and Accessories: Garden lights, sculptures, birdbaths, fountains. Lawn Making and Maintenance: Site preparation, Grass selection, Sowing/turfing, Irrigation and mowing. Design of Special Features: Rockery, Water garden. Types of Gardens: Vertical gardens, Roof gardens, Public parks and gardens, Indoor gardening, Therapeutic/Healing gardens, Japanese gardens, Mughal gardens, Zen gardens (as special types).		
	Total	24 Hours	

Text Books and References

- 1. Agrawal, P.K. (1993). Hand Book of Seed Technology. New Delhi, Delhi: Dept. of Agriculture and Cooperation, National Seed Corporation Ltd.
- 2. Bose T.K., Mukherjee, D. (1972). Gardening in India. New Delhi, Delhi: Oxford & IBH Publishing.
- 3. Jules, J. (1979). Horticultural Science, 3rd Edition. San Francisco, California: W.H. Freeman and Co.
- 4. Kumar, N. (1997). Introduction to Horticulture. Nagercoil, Tamil Nadu: Rajalakshmi Publications.
- 5. Musser E. Andres. (2005). Fundamentals of Horticulture. New Delhi, Delhi: Mc Graw Hill Book Co.

B.Sc. BOTANY – IV Semester Skill Paper 1 Floriculture

Objectives:

- To have a basic idea about floriculture.
- To learn the commercial aspects of floriculture.
- To learn certain arts related to floriculture.
- To learn methods involved in the cultivation of commercially important plants for cut flowers.

Learning outcome:

After completing this course, the learner will be able to;

- Distinguish among the various Ornamental and indoor plants.
- Understand various commercial aspects of floriculture.
- Diagnose the various diseases and pests of ornamental plants.

Unit	Content of Theory Skill Course	Teaching Hours
I	Introduction: Importance and scope of floriculture. Ornamental Plants: Flowering annuals; perennials; Shade and ornamental trees; Ornamental bulbous and foliage plants; Cacti and succulents; Palms and Cycads; Ferns and fern allies. Cultivation of plants in pots; Indoor gardening. Floriculture and greenhouse technology.	
Ш	Commercial Floriculture: Factors affecting flower production; Production and packaging of cut flowers; Commercial aspects and exporting of flowers and ornamental plants. Flower arrangements, Ikebana in brief. Methods to prolong vase life. Cultivation of Important cut flowers (Carnation, Jasmine, Anthurium, Aster, Chrysanthemum, Dahlia, Gerbera, Gladiolus, Marigold, Rose, Lilium, Orchids). Diseases and Pests of Ornamental Plants. Quarantine and testing requirements	12hrs
	Total	24 Hours

Reference

- 1. **1. Randhawa, G. S., & Mukhopadhyay, A.** (1986). *Floriculture in India* (Illustrated ed.). Allied Publishers. ISBN: 8170230578.
- 2. Adams, C. R., & Early, M. P. (2004). *Principles of horticulture* (4th ed.). Routledge. ISBN: 780080480350

SEMESTER V – Paper -V

Ecology and Conservation Biology – Theory

Course objectives:

- > To make the students understand the interactions between environment and organisms
- > To increase the awareness among students about global environmental concerns.
- > To make the students appreciate the concepts of ecological issues and conservation methods.

Course outcome:

After the successful completion of the course, the student will be able to:

- Understand the role of various factors in developing the ecology of an area.
- Understand the stability of an ecosystem.
- Learn the conservation measures

Unit	Topics	Teaching Hours (36)
I	Introduction to Ecology and Ecosystem Ecology	12
	Definitions, Principles and scope of Ecology.	
	Ecological factors: Climatic factors: light, temperature, precipitation and humidity.	
	Edaphic factors: Soil and its types, soil texture, soil profile, physico-chemical	
	properties of soil-mineral particle, soil pH, soil aeration, organic matter, soil	
	humus and soil microorganisms.	
	Ecological groups of plants and their adaptations: Morphological and anatomical adaptations of hydrophytes, xerophytes, epiphytes and halophytes.	
	Ecosystem Ecology: Types of ecosystems with examples – terrestrial and aquatic	
	Ecosystem functions and processes.	
	Ecological succession : Definition, types - primary and secondary. General stages	
	of succession.	
	Community Ecology: Community and its characteristics, Concept of Ecotone and Ecotypes.	
II	Unit-II: Phytogeography and Environmental issues	12
	Phyto geographical regions - concept, phyto geographical regions of India.	
	Vegetation types of Karnataka – Composition and distribution of evergreen,	
	semi-evergreen, deciduous, scrub, mangroves, shoal forests.	
	Ecological methods and techniques: Methods of sampling plant communities	
	-transects and quadrates. Remote sensing as a tool for vegetation analysis, land	
	use land cover mapping.	
	Water pollution: Causes, effects and control of water pollution.	
	Air pollution: Causes, effects and control measures.	
	Soil pollution: Causes, effects and control measures.	

III	Unit-III: Biodiversity and Conservation	12		
	Biodiversity: Definition, types of biodiversity - habitat diversity, species			
	diversity and genetic diversity, Global and Indian species diversity in brief.			
	NTFP, Values of Biodiversity, Threats to biodiversity.			
	Concept of Biodiversity Hotspots, Biodiversity hotspots of India. Concept of			
	endemism and endemic species. ICUN plant categories with special reference to			
	Karnataka/Western Ghats. Biodiversity Conservation-Indian Forest			
	conservation act, Biodiversity bill (2002). Conservation methods. <i>In-situ</i> and <i>ex-</i>			
	situ methods. In-situ methods – Biosphere reserves, National parks, Sanctuaries,			
	Sacred grooves. Ex-situ methods-Botanical gardens, Seed bank, Gene banks,			
	Pollen banks, Culture collections, Cryopreservation.			
	Soil and Water conservation practices: Soil management, Rain water			
	harvesting and watershed management.			
	Total	36 hrs		

REFERENCES:

- Bendre A. M. & Pande P. C. 2006. Introductory Botany, Rastogi Publications.
- Chapman, J.L&M.J. Reiss 1992. Ecology (Principles & Applications). Cambridge University Press, U.K.
- Kaushik A. & Kaushik C.P. 1990. Perspectives in Environmental Studies. New Age International Publishers
- Kochhar, P.L. 1975. Plant Ecology. (9th Edn.,) New Delhi, Bombay.
- Kumar, H.D. 1992. Modern Concepts of Ecology (7th Edn.) Vikas Publishing Co., New Delhi.
- Mohan P. Arora. 2002. Ecology, Himalaya Publishing House.
- Odum E.P. 1975. Ecology by Holt, Rinert & Winston.
- Sharma, P.D. 2018. Fundamentals of Ecology. Rastogi Publications, New Delhi.
- Shukla, R.S. and Chandel, P.S. 2005. A Textbook of Plant Ecology: Ethnobotany and Soil Science. 10th edition. S Chand publication, New Delhi.
- Verma P.S. & Agarwal V.K. 2010. Cell Biology, Genetics, Molecular Biology, Evolution and Ecology. S. Chand & Company Pvt. Ltd.
- Weaver J. E. & Clements F. E.: Plant Ecology, Tata McGraw-Hill Publishing Company Ltd. New Delhi.

SEMESTER -V; Paper-VI

Genetics, Cell and Molecular Biology -Theory

Course objectives:

- > To study the structure and functions of a cell and its organelles.
- > To understand cell division and plant growth
- > To know the inheritance in plants
- > To study the plant at its molecular level

Course outcome:

After the successful completion of the course, the student will be able to:

- Understand the significance of a cell and its organelles
- Distinguish the two types of cell division and its role in plants growth and development.
- Understand the plants at molecular level

Unit	Topics	Teaching Hrs. (36)
I	Cytology:	12
	Structure of plant cell, Ultra-structure and functions of cell wall, plasma	
	membrane- fluid-mosaic model, endoplasmic reticulum, chloroplast, ribosomes,	
	golgi complex, mitochondria, peroxisome, plastids and vacuole.	
	Ultra structure of nucleus - nuclear membrane, nuclear pore complex and	
	nucleolus. Ergastic substances in plant cells.	
	Cell Division and Chromosomes:	
	Types of chromosomes based on centromere position, Autosomes and Allosomes,	
	structure of metaphase chromosome, Ultra structure of Chromosomes-	
	Nucleosome model.	
	Cell cycle, Mitosis in plant cells- karyokinesis and cytokinesis, Meiosis in plant	
	cells, significance of mitosis and meiosis.	

II	Structure, Chemistry and Expression of Gene:	12
	Experiments to prove DNA as genetic material – Griffith experiment, Avery.	
	McCarty and MacLeod experiments, Hershey - Chase experiment.	
	DNA: Chemical composition, types -A, B and Z-DNA, structure-Watson & Crick	
	model, Semiconservative replication of DNA.	
	RNA: Structure and functions of m RNA, t RNA and r RNA.	
	Structure of Gene: Cistron, recon and muton concept. Prokaryotic and eukaryotic	
	genes. Genetic code and its properties.	
	Regulation of gene expression in prokaryotes- Lac operon model.	
	Gene regulation in eukaryotes- Transcription and Translation, process of Gene splicing, post transcriptional changes.	
III	Genetics:	12
	Introduction to genetics, Brief history of Mendel and his experiments on pea	
	plants.	
	Monohybrid cross and law of segregation, dihybrid cross and law of independent	
	assortment. Test cross and back cross-monohybrid and dihybrid.	
	Incomplete dominance- flower color in <i>Mirabilis</i> . Multiple alleles – self sterility in	
	tobacco.	
	Gene Interactions with plant examples: Complementary - 9:7, Supplementary -	
	9:3:4 and Dominant Epistasis –, 12:3:1 ratio. Polygenic inheritance - kernel color	
	in wheat.	
	Linkage and its types – cis and trans, complete and incomplete. Linkage in Maize.	
	Mechanisms of sex determination in Plants – <i>Melandrium</i> and <i>Coccinia indica</i> ,	
	Gene mutations: Spontaneous mutations, Induced mutations -Physical and	
	chemical mutations. Molecular basis of mutations- base substitutions and	
	frameshift mutations.	
	Total	36 hrs

REFERENCE BOOKS:

- 1. S Sundara Rajan, 2004, Genetics, Anmol Publications Ltd.
- 2. Gupta P.K 1999. A text book of Cell and Molecular Biology. Rastogi Publication Meerut
- 3. Cooper, G.M. and Hausman, R.E. 2009. The Cell: A Molecular Approach. 5th edition.ASM Press & Sunderland, Washington, D.C.; Sinauer Associates, MA.
- 4. De Robertis, E.D.P. and De Robertis, E.M.F. 2006. Cell and Molecular Biology. 8thedition. Lippincott Williams and Wilkins, Philadelphia.
- 5. Gardner, E.J., Simmons, M.J., Snustad, D.P. 2008. Principles of Genetics.8th Edition Wiley India.
- 6. Griffiths, AJF. Wessler, SR., Lewontin, RC. and Carroll, SB. 2012. Introduction to Genetic Analysis. IX Edition W.H. Freeman and Co.
- 7. Burns G.W. 1983. The Science of Genetics An Introduction to Heredity. 5th edition Mac Mill. Publ.
- 8. David Freifilder 1996. Essentials of Molecular biology Panima Publishing company New Delhi.
- 9. Gardner E.J., M.J. Simmons & D.P. Snustad. 1991. Principles to Genetics 8th edition. John Wiley
- 10. Gupta P.K. 2000 Genetics and Cytogenetics. Rastogi Publishers.
- 11. lug W.S. & M.R. Gummings. 2003. Concepts of Genetics 7th Edition. Pearson Edition
- 12. Kumar H.D. 2000. Molecular Biology. Vikas Publishers.
- 13. Malacinski G.M. & D. Freifelder. 1998. Essentials of Molecular Biology. Jones & Bartlatt Publishing Boston. 3rd Edition.
- 14. Powar C.B. 2005, Cell Biology 3 edition Himalaya Publishing New Delhi.
- 15. Sambamurty A.V.S.S. 1999. Genetics, Narosa Publishing House.

SEMESTER –V Ecology, Genetics, Cell and Molecular Biology– Practical

Practical No.	Experiments
1	Hydrophytes: Morphological adaptations in <i>Pistia, Eichhornia, Hydrilla, Nymphaea</i> and Anatomical adaptations of Hydrophytes - <i>Hydrilla</i> and <i>Nymphaea</i> .
2	Xerophytes: Morphological adaptations in <i>Asparagus, Casuarina, Acacia, Aloe vera, Euphorbia tirucalli</i> and Anatomical adaptations of <i>Casuarina phylloclade/ Acacia phylloclade.</i>
3	Epiphytes: Morphological adaptations in <i>Acampe, Bulbophyllum, Drynaria</i> and Anatomical adaptations of epiphytic root of <i>Acampe/Vanda</i> . Halophytes: Vivipary and Pneumatophores
4	Demonstration of different types of vegetation sampling methods – transects and quadrats. Field visits to study different types of local vegetations/ecosystems and the report to be written in practical record book
5	Project work Ecology
6	Project work
7	Study of ergastic substances - starch (potato), aleurone (wheat grain), calcium oxalate (Pistia), calcium carbonate (Ficus leaf), oil globules (castor seed) and Raphides (Colocasia petiole). Observation of permanent slides of mitosis and meiosis
8	Study of different stages of mitosis by squash technique using Onion root tip
9	Study of different stages of meiosis using permanent slides.
10	Measurement of length and breadth of cells by micrometry technique (Using Onion or Rhoeo leaf cells)
11	Genetic problems related to Mendel's law and incomplete dominance (any Four)
12	Genetic problems related to interaction of genes (any Four)

Mangalore University

III B. Sc. Semester - V, Practical Examination

Ecology, Genetics, Cell and Molecular Biology

Question paper and Scheme of evaluation

Time: 3 hrs.	Batch	Date	Timeam/pm	Max. Ma	arks: 40
1. Prepare a st	ained temporary	mount of the T.S. of	of material A . Draw a neat	labeled dia	agram.
Leave the sl	ide for inspection	n.			05
2. Prepare a sq	uash of B for the	study of mitosis. L	eave the slide for inspection	on.	06
3. Identify the	ecological group	of C and D. Comn	nent on their ecological ada	aptation.	04
4. Identify the	slides E & F and	Comment on it.			06
5. Solve the ge	netic problem G				04
6. Practical Re	cord with field vi	sit report			10
7. Project work	report				05

1	A		Prep. 02 Sk 01 Features 02	Reg. No. of Candidates Assigned:
2	В		05 Prep. & Stage 03 Sk 01 Comments 02	
3	С		Ecol.Group 01 Ecol.Features 01	Reg. No. of absentees:
	D		02 each	Total examined:
4	F		Identification 01 Sk 01 Comment 01 03 each	Examiners: 1.External
5	G		Problem solve 03 Conclusion 01	
6		Practical Record with field visit report	10	2.Internal
7		Project report	05	

Instruction to Examiners:

A from Hydrophyte/Xerophyte/ Epiphyte

B Mitosis squash

C and D Specimen from Hydrophyte/Xerophyte/ Epiphyte/Halophyte

E- Stages of Meiosis and F-Ergastic substance

G -Any one genetic problem mentioned in the practical syllabus

B.Sc. BOTANY – V Semester SKILL PAPER -II

Mushroom Cultivation Technology

Learning outcomes:

After completion of the course, the students will be able to;

- Understand the various aspects of mushroom cultivation the diversity of microbes in nature.
- Understand the storage of methods of cultivated mushrooms
- Know the nutritional benefits of edible mushrooms

Unit	Topics	Teaching Hours
I	Introduction – Edible and non-edible mushrooms. Edible mushrooms commercially cultivated in India – <i>Volvariella volvacea, Pleurotus citrinopileatus</i> and <i>Agaricus bisporus</i> . Cultivation Technology: History. Infrastructure- substrates (locally available) Polythene bag, vessels, Inoculation hook, inoculation loop, stove, sieves, culture rack, mushroom unit (Thatched house), water sprayer, tray. Pure culture: Medium, sterilization, preparation of spawn, multiplication. Mushroom bed preparation - paddy straw, sugarcane trash, banana leaves, areca sheath and coconut leaves. Composting technology in mushroom production.	12
II	Storage and nutrition: Short-term storage (Refrigeration – up to 24 hours) Long term Storage (canning, pickels, papads), drying, storage in salt solutions. Chemical composition and their nutritional values: Proteins - amino acids, minerals, carbohydrates, vitamins and crude fiber. Food Preparation: Types of foods prepared from mushrooms. Research Centers - National level and Regional level. Cost benefit ratio - Marketing in India and abroad, Export Value.	12
	Total	24 hrs

References:

- Marimuthu, T. Krishnamoorthy, A.S. Sivaprakasam, K. and Jayarajan. R (1991) Oyster Mushrooms, Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore.
- 2. Swaminathan, M. (1990) Food and Nutrition. Bappco, The Bangalore Printing and Publishing Co. Ltd., No. 88, Mysore Road, Bangalore -560018.
- 3. Tewari, Pankaj Kapoor, S.C., (1988). Mushroom cultivation, Mittal Publications, Delhi.
- 4. Nita Bahl (1984-1988) Hand book of Mushrooms, II Edition, Vol. I & Vol.II.

SEMESTER – VI; Paper-VII PLANT PHYSIOLOGY – Theory

Course objectives: To understand the various physiological life processes in plants

To study the importance of the physiological processes and their mechanism

To study the role of various metabolites and their importance

Course outcome: After the successful completion of the course, the student will be able to:

• Compare the various metabolic activities taking place in plants.

• Evaluate the various factors affecting the plant activities.

Unit	Topics	Teaching Hrs (36)
I	Plant water relations: Mechanism of water absorption, Factors affecting water absorption. Mechanism of ascent of sap: Vital and physical force theories. Transpiration. Types and process. Mechanism of guard cell movement. K ⁺ ion exchange mechanism. Antitranspirants. Guttation. Translocation of organic solutes: Transport of organic solutes. path of transport, vein loading and unloading. Transcellular hypothesis, mass flow hypothesis. Mineral nutrition: Essential elements: Classification - Macro and Micronutrients. Functions and deficiency symptoms of macro elements- N, P, K and Mg. Functions and deficiency symptoms of Micronutrients-Zn, Mn and B. Hydroponics and its applications. Mechanism of mineral salt absorption: Passive absorption – diffusion, ion exchange. Active absorption- Cytochrome pump theory, Protein Lecithin theory. Enzymes - classification, kinetics and mechanism of action. Bioenergetics: Definition, examples for major bioenergetic processes.	12
II	Photosynthesis: Photosynthetic Pigments (Chl a, b, xanthophylls, carotene); Photosystem I and II, reaction center, antenna molecules; Electron transport and mechanism of ATP synthesis; C3, C4 and CAM pathways of carbon fixation; Photorespiration (C2 pathway). Respiration: Glycolysis, TCA cycle; Oxidative phosphorylation, Glyoxylate cycle, Oxidative Pentose Phosphate Pathway. Anaerobic respiration – alcoholic and lactic acid fermentation. ATP yield during aerobic and anaerobic respirations. Respiratory quotient.	12

ſ	III	Carbohydrate metabolism–General account of carbohydrates. Metabolism of sucrose	12
		and starch.	
		Nitrogen metabolism - physical and biological nitrogen fixation and mechanism of	
		biological nitrogen fixation- asymboitic and symbiotic, Nitrate reduction and amino	
		acid synthesis.	
		Fat metabolism - General account of fats, synthesis of glycerol, synthesis of fatty	
		acids, and condensation of fatty acid and glycerol, fat degradation, β (Beta) -	
		oxidation, glyoxylate cycle and its significance, plant waxes.	
		Plant growth regulators: Definition and classification, Role of Auxins, Gibberlins,	
		cytokinins, ABA and ethylene on plant growth and development. Practical utility in	
		agriculture and horticulture, Synthetic growth regulators.	
		Plant movements: Nastic movements – nyctinasty, chemo nasty and seismonasty.	
		Tropic movements –phototropic, hydrotropic, geotropic and thigmotropic.	
		Brief account of seed dormancy: Causes and breaking of seed dormancy	
		Total	36 Hours

References:

- 1. Wilson, K. and Walker, J. 1994. Fundamentals of Biochemistry 2nd Ed, John Wiley and Sons Inc.
- 2. Jain VK, 2008. Fundamentals of Plant Physiology. S Chand and Co.
- 3. Kochhar P L, Krishnamoorthy H N. Plant Physiology. Atmaram and sons, Delhi.
- 4. Kumar and Purohit. Plant Physiology: Fundementals and Applications. Agrobotanical Publishers.
- 5. Malik CP, 2002. Plant Physiology. Kalyani publishers.
- 6. Mukherjii S, Ghosh AK, 2005. Plant Physiology. New Central Book Agency, Calcutta.
- 7. Noggle GR, Fritz GJ, Introductory Plant Physiology. Prentice Hall of India.
- 8. Pandey SN, Sinha BK, 2006. Plant Physiology. Vikas Publishing House, New Delhi.
- 9. Salisbury F B, Ross C W, 1992. Plant Physiology. CBS publishers and Distributers, New Delhi.
- 10. Verma V, 2007. Text book of plant physiology, Ane books India.

SEMESTER – VI; Paper-VIII

Plant Breeding and Biotechnology

Course outcome: After the successful completion of the course, the student will be able to:

Understand the plant breeding methods and importance

Understand the methods of plant tissue culture and plant biotechnology

Unit	Topics	Teaching Hrs. (36)
I	Plant Breeding:	12
	History of plant breeding, Objectives, and major contributions of plant breeding. Centres of	
	origin and evolution of crop plants. Genetic basis of breeding self- and cross-pollinated	
	crops. Role of plant genetic resources in plant breeding.	
	Methods of Plant breeding: Introduction, Selection- Pure line, Clonal and Mass line.	
	Polyploidy breeding, Mutation Breeding, Hybrid breeding – concept of heterosis and inbreeding, types and techniques of hybridisation.	
	Self-incompatibility and Male sterility in crop plants -types, production, and significance in	
	plant breeding.	
	Cultivar development, Plant Breeders rights and Farmers rights	
II	Plant Tissue Culture:	12
	History and Scope, concept of cellular	
	totipotency. Tissue culture laboratory and	
	Equipments	
	Basic aspects of plant tissue culture- Sterilization, Culture media and its preparation. Role	
	ofgrowth hormones in plant tissue culture.	
	Types of cultures-Callus culture and Organogenesis.	
	Pollen culture and haploid plant production. Embryo culture. Somatic embryogenesis and synthetic seeds. Protoplast culture and somatic hybridization techniques.	
	Application of plant tissue culture in Agriculture, Forestry, Industries and plant conservation.	

III	Plant Biotechnology:	12
	Introduction to Plant Genetic Engineering.	
	Tools used in genetic engineering: Enzymes- Restriction endonucleases, DNA ligase,	
	Vectors -pBR 322, Ti and Ri plasmid vectors, artificial chromosomes, difference between	
	cloning and expression vectors.	
	General steps of recombinant DNA technology using plasmid vectors and bacterial host	
	cell. Gene transfer methods to plant cells: Agrobacterium based gene transfer technique,	
	Direct genetransfer – microinjection, electroporation, microprojectile techniques. Plant	
	regeneration fromtransformed cells.	
	Transgenic plants: Definition and examples, Steps involved in the production of golden rice	
	and Bt cotton. Applications and threats from transgenic plants.	
	Total	36 hrs

SUGGESTED REFERENCE BOOKS:

- 1. Allard R.W (1999): The Principles of Plant Breeding, John & Wiley and Sons.
- 2. Poelman J.M: Breeding Field Crops, Springer.
- 3. George Acquaah (2012): Principles of Plant Genetics & Breeding: Wiley-Blackwell.
- 4. Bose T.K. & Mukherjee, D., 1972, Gardening in India, Oxford & IBH Publishing Co., New Delhi.
- 5. Sandhu, M.K., 1989, Plant Propagation, Wile Eastern Ltd., Bangalore, Madras.
- 6. Kumar, N., 1997, Introduction to Horticulture, Rajalakshmi Publications, Nagercoil. institution)
- 7. Pullaiah. T. and M.V. Subba Rao. 2009. Plant Tissue culture. Scientific Publishers, New Delhi.
- 8. Bhojwani, S.S. and Razdan, M.K., (1996). Plant Tissue Culture: Theory and Practice. Elsevier Science Amsterdam. The Netherlands.
- 9. Glick, B.R., Pasternak, J.J. (2003). Molecular Biotechnology- Principles and Applications of recombinant DNA. ASM Press, Washington.
- 10. Stewart, C.N. Jr. (2008). Plant Biotechnology & Genetics: Principles, Techniques and Applications. John Wiley & Sons Inc. U.S.A.
- 11. Gupta P.K. (2010), Plant Biotechnology, Rastogi Publications, Meerut.
- 12. Monica Jain (2014), Environmental Biotechnology, Narosa Publishing House, New Delhi.
- 13. Mohapatra, P. K. (2007), Textbook of Environmental Biotechnology, IK International, New Delhi.

SEMESTER –VI Plant Physiology and Plant Breeding & Biotechnology

Practical No	Experiments
	Major experiments
1	Experiment to measure the solute potential of a cell sap by plasmolytic method.
2	Demonstration of transpiration pull/Suction force due to transpiration.
3	Separation of plant pigments by paper chromatography method.
4	Demonstration of CO ₂ liberation during respiration using Ganong's respiroscope
	Minor Experiments
5	Potato osmoscope /Thistle funnel experiment to demonstrate osmosis
	Demonstration of imbibition pressure using germinating seeds
6	Demonstration of O2 liberation during photosynthesis by bubbling method
	Demonstration of fermentation using Kuhne's Fermentation vessel
7	Demonstration of plant movements – Heliotropism, Geotropism, Hydrotropism
	Measurement of growth using arc auxanometer
8	Qualitative test for carbohydrates, Protein, fat, and oil
9	Study of plant propagation methods-Cutting, Layering and Grafting
10	Techniques of emasculation, artificial pollination, and bagging
11(a)	Study of Biotechnology lab equipment's – Autoclave, Laminar air flow cabinet, Hot air
. ,	oven, Incubator, Colony counter, Hemocytometer
11 (b)	Preparation of Synthetic seeds by alginate encapsulation
12	Visits to local nurseries and institutions involved in plant breeding to study the various methods and techniques employed/ Biotechnology Lab or institutions/biofertilizer and biopesticide production sites and submit a report

Mangalore University

B. Sc - VI Semester, Botany Practical Examination PLANT PHYSIOLOGY AND BIOTECHNOLOGY

Time: 3 hrs.	Batch	Date	Timeam/pm	Max. Marks: 40
1. C	onduct Major Expe	riment A		12 marks
2. C	omment on minor e	experiments B and	1 C	08 marks
3. Po	erform the Biochem	nical test D		04 marks
4. Id	lentify and commer	nt on E and F		06 marks
5. Pı	ractical Record and	Field report		10 marks

1	A		Requirements - 02 Principle -01 Sketch-01 Procedure-02 Setting-04 Results and	Register No. Assigned:
2	В		Inference-02 = 12 Procedure -02 Sketch -01	Absentees:
	С		Results and Inference 01 04 each	Total Examined:
3	D		Procedure-02 Prep -01 Results and Inference-01	Examiners
4	Е		Identification 01 Sk 01	1.
	F		Comment <u>01</u> 03 each	2.
5		Practical Record with field visit report	7+3=10	

Instruction to Examiners:

A Physiology Major Experiment by picking lots

B and **C** Physiology minor experiments

D- Biochemical test

E-Plant propagation methods/techniques; F -Any one biotechnological instrument

B.Sc. BOTANY – VI Semester SKILL PAPER -III Seed Technology

Course Outcome:

- Understanding the fundamentals of seed germination. viability and vigour
- Learning about seed production, processing, and quality control.
- Exploring the role of seed technology in agricultural productivity.

Unit 1: Introduction to Seed Technology

- ➤ Introduction to Seed Technology: Definition, scope, and importance. Historical perspective of seed technology in agriculture.
- > Seed Development and Germination: Structure and development of seeds. Factors affecting seed germination and dormancy.
- > Seed Viability and Vigor: Concepts of seed viability and vigor. Methods of testing seed viability and vigor.

Unit 2: Seed Production and Processing

- ➤ **Principles of Seed Production:** Genetic and agronomic principles. Seed production techniques for self-pollinated and cross-pollinated crops.
- > Seed Certification and Quality Control: Objectives and procedures of seed certification. Seed standards and quality control measures.
- > Seed Processing and Storage: Principles and techniques of seed processing. Seed storage and its importance in maintaining seed quality.

Unit 3: Advances in Seed Technology

- ➤ **Biotechnological Approaches in Seed Technology:** Role of biotechnology in seed improvement. Genetic engineering and molecular markers in seed technology.
- > Seed Health: Importance of seed health in agriculture. Methods of seed treatment and protection.
- > Seed Industry and Trade: Overview of the seed industry in India. National and international seed trade regulations and policies.

Assessment:

- Internal Assessment Test: 10%
- Assignments/Projects: 10%
- End-Semester Examination: 80%

Recommended Readings:

- 1. Agarwal, R.L., Seed Technology, Oxford & IBH Publishing Co. Pvt. Ltd.
- 2. Bewley, J.D., and Black, M., Seeds: Physiology of Development and Germination, Springer.
- 3. McDonald, M.B., and Copeland, L.O., Seed Production: Principles and Practices, Chapman & Hall.
- 4. Basra, A.S., Seed Quality: Basic Mechanisms and Agricultural Implications.

Question Paper Pattern for Theory

	Reg. No.	
	BSCI	BO XX 000
Semester B. Sc. Deg	ree Examination,	202
(SEP) (202	4-25 batch onwards)	
	BOTANY	
Title	e of the Course	
Time: 3 hrs.		Max. Marks: 80
Instructions : 1) Answer Part	- $m{A}$ and Part $-m{B}$	
2) Answer any fo	ur full questions from Part-	B choosing
one full ques	tion from each unit	
· -	on Part – B carry equal ma	rks
•	s wherever necessary	
	Part - A	
I. Answer any ten of the following:		$(10 \times 2 = 20)$
1.		,
2.		
3.		
4.		
5.		
6. 7.		
8.		
9.		
10.		
11.		
12.		
	Part - B	
	Unit - 1	
13. a)		3
b)		5
c)		7
,		

14.	a)			4
	b)			4
	c)			7
	·		Unit - II	
15.	a)			3
	b)			3 5
	c)			7
	,	OR		
16.	a)			4
	b)			4
	c)			7
			Unit - III	
17.	a)			3
	b)			3 5
	c)			7
		OR		
18.	a)			4
	b)			4
	c)			7
			Unit - IV	
19.	a)			3
	b)			5
	c)			7
		OR		
20.	a)			4
	b)			4
	<u>a)</u>			7
